

Operating principle of incandescent lamp

- * Efficient in IR region
- Efficiency in visible region <20 lm/W
- * Short lifetime
- * Perfect color rendering

http://page.cextension.jp/c3079/pageview/pdf/0310.pdf http://lamp1.com/product/category/denkyu/クリア電球/110v c

Operating principle of fluorescent lamp

http://www.jelma.or.jp/05tisiki/pdf/guide_flu_02.pdf

- * Efficiency is higher than that of incandescent lamp, but it is limited by Stokes shift loss <120 lm/W
- * Lifetime is limited by ion bombardment.

* Hg is inevitable.

5/40

Operating principle of LED

Development of the MOVPE reactor

Why it was so difficult to grow high quality GaN?

Why it was so difficult to grow high quality GaN?

History of Mg

Violet luminescence of Mg-doped GaN

H. P. Maruska, D.A. Stevenson, J. I. Pankove, Appl. Phys. Lett., 22, 303 (1973).

World's first violet LED based on Mg-doped GaN.

Mg-doped GaN. Maruska a rich man?

http://www.sslighting.net/lightimes/features/maruska_blue_led_history.pdf

Realization of p-type GaN by Mg-doping followed by LEEBI

H. Amano et al., JJAP 28(1989)L2112.

1992 Thermal annealing S. Nakamura et al., JJAP 31(1992)1258.

21

22/40

24/40

Mechanism

Hydrogen passivation of acceptor

Van Vechten et al., JJAP 31(1992)3662.

W. R. Wampler,^{ai} S. M. Myers, A. F. Wright, J. C. Barbour, C. H. Seager, and J. Han Sandia National Laboratories, Albaquergue, New Mexico \$7185-1056

JAP, 90(2001)108.

1993 World's first commercialization of nitride-LEDs

26/40

